De kaldes for evighedskemikalier, men nu er 12 forskere på Aarhus Universitet ved at gøre evigheden en god del kortere for den store mængde af PFAS-stoffer, der skal tælles i tusindvis.
Den nye metode baserer sig på sollys og biomasse, og kan nedbryde de problemfyldte kemikalier i ét enkelt trin.
– Vi har udviklet flere forskellige metoder, der kan indfange og nedbryde PFAS. Nu er vi ved at samle teknologierne i et samlet design. Vi er det eneste sted i Danmark, der arbejder på en ét-trins løsning til at indfange, opkoncentrere og nedbryde PFAS i én arbejdsgang, siger lektor Zongsu Wei, der leder forskningsgruppen Water Engineering Innovation på Aarhus Universitets Institut for Bio- og Kemiteknologi.
Kemisk består PFAS af alkylforbindelser (kulstofkæder) hvor flere hydrogenatomer er udskiftet med fluoratomer. Og det er særligt den kemiske binding mellem kulstof- og fluoratomer, der er problemet, når det kommer til at nedbryde PFAS, for denne kemiske forbindelse er en af de kraftigste, der findes.
Den stærke kulstof-fluor-binding gør, at fluorerede stoffer ophobes i naturen. Bindingen er så stærk, at den kan holde i mange år, og når flere af stofferne beklageligvis har en række skadelige effekter på mennesker og miljø, så står vi med et miljøproblem.
Den løsning, forskningsgruppen arbejder på, er et filter, der konstant indfanger og nedbryder PFAS og regenererer sig selv, og som kan installeres f.eks. ved drikkevandsboringer eller ved rensningsanlæg.
Teknologien har forskningsgruppen bevist i lab-skala. Deres filter kan indfange PFAS og derefter nedbryde stofferne via en metallisk fotokatalysator, der består af titanium dioxid og en række overgangsmetaller. Metal-katalysatorerne er fikseret på et membranfilter, og processen starter, når metallerne udsættes for UV-lys.
– Herved bliver metallernes elektroner exciteret. Det betyder, at de springer op i et højere energiniveau. Når det sker, åbner vi pludselig op for kemiske reaktioner, der ellers ikke normalt ville ske. Vi skaber frie radikaler, som er super-reaktive ioner, der kan angribe de kulstof-fluor-bindinger, der ellers er så svære at nedbryde. Samtidig skaber processen reduktive forhold, der bidrager til den samlede nedbrydning af PFAS, siger Allyson Leigh Junker, der er ph.d.-studerende i Water Engineering Innovation gruppen, og som netop arbejder med den fotokatalytiske del af teknologien.
Ph.d.-studerende Charlotte Skjold Qvist Christensen, der ligeledes er en del af gruppen, arbejder med selve filteret. I dag benytter man ofte et filter af aktiveret kul, men Charlotte arbejder på at udvikle et filter af biokul.
– Biokul er en analog til aktiveret kul, men er produceret af restbiomasse, oftest fra landbruget. Det kan eksempelvis produceres af halm. Denne gennemgår en termokemisk omdannelse i et iltfattigt miljø, som omdanner biomassen til en slags kulpulver. Processen transformerer strukturen af lignocellulosen i biomassen, og gør det til en slags bæredygtig udgave af aktiveret kul, for kulstoffet, som produktet består af, er det, som planterne tidligere har opfanget fra atmosfæren, siger hun.
Aktiveret kul har et langt større overfladeareal end biokul, som er med til at give stoffet en ekstremt god adsorptionsevne. Charlotte Skjold Qvist Christensen arbejder på at øge biokullets overfladeareal.
– Vi er oppe på ca. 600 kvadratmeter overfladeareal pr gram, og dermed nærmer vi os kraftigt aktiveret kul. Jo større areal jo bedre, for jo mere PFAS kan binde sig til overfladen,” siger hun.
PFAS binder sig til overfladen via hydrofobiske interaktioner og gennem elektrostatisk tiltrækning. Hun arbejder på yderligere at forbedre bindingen via disse mekanismer ved at modificere overfladekemien af biokul.
Tilsammen skal filteret med fikserede fotokatalysatorer kunne fjerne al PFAS fra gennemstrømmende vand. Teamet har i lab-skala indtil videre demonstreret, at filteret kan fjerne over 99 % PFAS og at fotokatalysatorerne kan nedbryde 53 %.
Tidshorisonten for et pilotskala-projekt er 3-4 år.
Kilde: Aarhus Universitet