Nye nanostrukturerede overflader muliggør den praktiske udnyttelse af plasmoniske fænomener til kemisk spormængde detektion ved brug af Raman-effekten.
Artiklen har været bragt i Dansk Kemi nr. 1/2, 2014 og kan læses uden illustrationer, strukturer og ligninger herunder. Se relaterede artikler nederst på siden.
Af Michael Stenbæk Schmidt, DTU Nanotech
I 1928 opdagede de indiske forskere C.V. Raman og K. S. Krishnan, at inelastisk spredning af lys kunne levere oplysninger om de molekylære bindinger lyset interagerede med. To år senere blev C.V. Raman hædret med Nobelprisen i fysik for denne opdagelse. Siden 1974, hvor de første forsøg viste, at man kunne forstærke Raman-effekten vha. strukturerede ædelmetaloverflader, er forskningen inden for overfladeforstærket Raman-spektroskopi (SERS – Surface Enhanced Raman Spectroscopy) gået fra at forstå de fysiske principper til nu at udnytte SERS som kemisk sensor uden for laboratoriet.
En unik overflade
Ledet af professor Anja Boisen har man på DTU Nanotech udviklet en nanostruktureret overflade, der på unik vis kan forstærke Raman-effekten enormt effektivt, som en af verdens bedste, og derved muligøre kemisk spormængde detektion i relevante koncentrationer for diverse kemiske specier. Ud over den høje følsomhed er det unikke ved denne overflade, i modsætning til andre overflader med samme formål, at den er meget billig at fremstille og derfor kan bruges som engangs ”consumables” i enkeltanalyser. Overfladen består af millionvis af silicium-nanosøjler, der er dækket af et nanometertykt lag guld. Disse nanosøjler er meget fleksible og har derfor mulighed for at læne sig mod deres nærmeste naboer, når de bliver udsat for svage kræfter. Når man tilsætter sin analyt til væskefasen, vil nanosøjlerne læne sig mod hinanden, når væsken fordamper. Nogle af analytmolekylerne vil dermed blive ”fanget” mellem søjlehovederne. Netop i mellemrummet imellem guldnanopartiklerne dannes der et meget stærkt elektromagnetisk felt kaldet ”hot spot” hvor Raman-effekten bliver enormt forstærket. Man kan også bruge samme teknik til detektion af stoffer i gasfasen. Efter man har udsat overfladen for analytgassen skal man blot påføre en dråbe væske og lade den indtørre for at skabe de nødvendige ”hot spots”. På den måde har man mulighed for at detektere meget lave koncentrationer af analytter.
Udvikling af Raman-spektroskopi
DTU Nanotech har i tre større projekter sammen med diverse samarbejdspartnere i ind- og udland udnyttet dette sensorprincip til at spore sprængstoffer, polyklorinerede biphenyler (PCB) i bygninger, hormoner i drikkevand, specifikke diagnostiske biomarkører i blod samt udåndingsluft i forbindelse med behandling af lungesygdommen cystisk fibrose. I forbindelse med biologiske målinger er udfordringen at få de specifikke markører til at binde til guldoverfladen. Der benyttes derfor en række funktionaliseringstrin inden selve Raman-målingerne finder sted.
Efterhånden som laser- og CCD-teknologien er blevet udviklet er Raman-spektroskopi blevet mere og mere udbredt. I takt med at flere slutbrugere har fået øjnene op for at bruge Raman-spektroskopi inden for deres respektive applikationsområder, er der kommet en øget aktivitet inden for instrumentudvikling. I kraft af dette er Raman-spektroskopi og især SERS blevet en mere gængs analysemetode, samtidig med at hardwaren er kommet ned i pris. I dag findes der adskillige fabrikanter af kommercielle Raman-spektrometre på markedet, og det er ikke længere udelukkende specialiserede forskningsgrupper, der gør brug af teknikken. Det forholder sig på samme måde med substrater, der forstærker Raman-effekten for at muliggøre spormængde-detektion. I dag bliver der brugt to kategorier af substrater: nanostrukturerede overflader og nanopartikler. Hver kategori har sine fordele og ulemper, men fælles for dem begge er, at de nu er tilgængelige på det kommercielle marked.
DTU Nanotech har også fostret et spin-out firma, der leverer guld- og sølvbelagte nanosøjler, der kan beskrives som en hybrid mellem de to kategorier af substrater (www.silmeco.com).
Mere information om projekterne kan findes på: http://www.dsf-muse.org, http://www.nanotech.dtu.dk/Research-mega/Projekter/Externally_Funded_Projects/NAPLAS og http://www.xsense.dk/
Figur 1. Den nanostrukturerede overflade består af millioner af silicium nanosøjler, der er dækket med guld. Store uniforme arealer kan produceres rutinemæssigt.
Figur 2. Det unikke ved denne overflade er, at de fleksible silicium nanosøjler kan læne sig mod de nærmeste naboer og danne stærke elektromagnetiske felter, der forstærker Raman-effekten enormt og muliggør spormængde detektion af analytten, skulle denne være til stede i den såkaldte ”hotspot”.
Figur 3. Hver søjle har lænet sig mod sin nabo og derved består overfladen af tusindevis af ”hotspots”.
Figur 4. Raman-spektra fra samme koncentration af 2,4-Dinitrotoluen-gas fordampet på to forskellige SERS-substrater. Nanosøjlerne har et signal 800 gange bedre end det gængse kommercielle tilgængelige.